

Wireless Network Monitoring and Troubleshooting

Understanding WLANs: Concepts, Challenges, and Best Practices

Desire Natukunda dnatukunda@renu.ac.ug

28th March, 2025

Outline

- Introduction
- Overview of WLANs
- Wi-Fi Standards
- Wireless Network Challenges
- Real-world scenarios
- Best Practices

Wireless Network LANs (WLANs)

- Wireless LANs use high-frequency radio waves.
- Users connected by WLANs can move around within the network coverage area.

Key Components of a WLAN

- Wireless Access Point (AP)
- Wireless client devices
- Antenna
- Authentication server
- Wireless LAN controller
- DNS and DHCP servers

Wi-Fi Standards

- Most WLANs are based on the standard IEEE 802.11, known as Wi-Fi.
- Define how wireless networks function.

Wi-Fi Standards Continued

Standard	Frequency (GHz)	Data rate (Mbps)
802.11b	2.4	11
802.11g	2.4	54
802.11n	2.4 and 5	300-600
802.11ac	5	3500
802.11ax	2.4 and 5	9600
802.11ax with 6 GHz	6	9600

Frequency Bands

2.4 GHz Band

- 14 channels
- Only 3 non-overlapping channels

5 GHz Band

- 25 non-overlapping channels of 20 MHz
- Can be aggregated to 40 MHz and 80 MHz

Wireless Transmission Process

Common Wireless Network Challenges

- Interference Issues
- Signal Coverage and Dead Zones
- Bandwidth Congestion
- Device Compatibility
- Security Risks

Interference

Disruption of Wi-Fi signals	Causes
 Results into slower speeds, disconnections or poor performance 	Nearby Wi-Fi networks using the same channel
	Non-Wi-Fi devices like Bluetooth, microwaves
	Physical obstructions like walls and furniture

Signal Coverage and Dead Zones

The extent of the area to which the wireless signals are transmitted.

 Places where our signal can't reach

Causes Distance from the access point

Thick walls, floors, glass, and furniture

Bandwidth Congestion and Overuse

 A network is overwhelmed by too much data traffic

 Leads to slowdowns, increased latency, and reduced performance Causes

Too many users connected to a single AP

High-bandwidth applications like streaming and gaming

Device Compatibility Issues

 Verify that devices support the same Wi-Fi standards and protocols as the network infrastructure that supports them

Causes

Older devices using legacy Wi-Fi standards

Some devices only supporting 2.4GHz instead of 5GHz

Security Vulnerabilities

 Loopholes that cyber attackers can exploit in your network. Causes

Weak Encryption or Open Networks

Unauthorized access and attacks

Real World Scenarios

- Slow Wi-Fi in a public place.
- Dropped connection while walking around an office.
- An office with a mix of old and new devices.
- Public Wi-Fi hotspot.
- Power Instabilities.
- Access Point with no uplink.

Best Practices

- Plan Proper AP Placement.
- Secure the Network.
- Optimize Frequency Use.
- Network Segmentation.
- Capacity Upgrades.
- Implement QoS to prioritize critical applications.
- Encourage upgrading to Wi-Fi 6 or Wi-Fi 5 devices.
- Use of dual or tri-band routers.
- Use of surge protectors and UPS.

THE END