

ICT SKILLING FOR SCHOOLS Wireless Networks

By Nicholas Mugambe <u>nmugambe@renu.ac.ug</u> <u>cnimusiima@renu.ac.ug</u>

Knowledge | Community | Solutions

Outline

May, 2024

Summary

- Introduction
- Wireless networks (Overview)
- Wireless LAN Deployyment
- Troubleshooting

• Lab

Introduction

- As Internet usage increases, users expect reliable access **anytime**, **anywhere**
- Wired networks offer the basis of user connectivity but are constrained to;
 - Limited Mobility Connected devices are tethered to their physical location
 - Limited Flexibility and Scalability- Hard to adapt to changing needs and layouts

How are these challenges addressed?

Wireless Networks

- A wireless network is any type of computer network that uses wireless data connections for connecting network nodes.
- Wireless networks offer;
 - Improved mobility
 - Improved scalability and flexibility

Wireless Networks Terminologies

- Access Point (**AP**)
 - A wireless device that allows wireless-capable devices to connect to a wired network.
- Wireless Clients
 - Devices, like laptops, smartphones, that connect to a wireless network
- SSID (Service Set Identifier)
 - The "Network Name" Often human readable.

SSID choice has an impact on Roaming

Wireless Networks Terminologies

- **dBm** (decibel milliwatt)
 - Wi-Fi signal strength is measured in dBm. It is provided as a negative value
- Interference
 - Disruption of wireless signals caused by overlapping frequencies, physical obstructions, or other electronic devices.

Knowledge | Community | Solutions

Key Components of a Wireless Network

- Access Point (**AP**)
- Wireless Client devices
- Antenna
- Authentication server
- Wireless Controller

Access Points

- Indoor APs
- Outdoor APs

Wireless Controllers

- Vendor specific
- They can be;

-ili-ilicisco

- Software-based (Installed on a physical or Virtual Machine)
- Hardware-based

Wi-Fi

- Wi-Fi is a trademark for an alliance (not a **technical term**)
- Wi-Fi is used to refer to **802.11** family of wireless standards

What are the WiFi Standards?

Why do we need standards for WiFi?

Wi-Fi Standards

- Rules and protocols that govern how wireless networks operate
- Developed by **IEEE** and have evolved overtime.
- Ensure compatibility and performance between devices

Wi-Fi Standards

• WiFi standards have evolved to

increase;

- Speed and throughput
- Range
- Overall network efficiency

WiFi Standards

Standard	Frequency (GHz)	Data rate (Mbps)
802.11b (WiFi 1)	2.4	11
802.11a (WiFi 2)	5	54
802.11g (WiFi 3)	2.4	54
802.11n (WiFi 4)	2.4 and 5	300-600
802.11ac (WiFi 5)	5	3500
802.11ax (WiFi 6)	2.4 and 5	9600

WiFi 7 is predicted to reach a maximum speed of up to 46 Gbps

2.4 GHz and 5 GHz? What is the role frequency?

Frequency Bands

- Frequencies in wireless networks determine;
 - Coverage and Range
 - Lower frequencies have a better range and can easily penetrate compared to higher frequencies
 - Bandwidth
 - Higher frequencies offer more bandwidth compared to lower frequencies

Roaming

- What happens when wireless clients move:
 - From one AP to another, in the same building?
 - From one building to another?
 - To a different part of campus, or a remote campus
- Is it important to stay on the network, without interruption (for example, to have a video call?
- Is it acceptable to log on again when entering a new network zone?

Wireless Roaming

- Ability of a wireless device to seamlessly switch between different APs within the same network.
- Avoids Interruption
- Avoids re-authentication

Wireless LAN Deployment

Knowledge | Community | Solutions

Wireless Network Planning

- **Planning is required;** needed to solve new problems wireless brings
 - Frequency monitoring & management
 - Reach & Power planning: Link budgets, Antennas
 - SSID planning: Names matter!
 - Rogue activity monitoring and management
 - Plan Subnet Sizes
 - Tradeoff between roaming ease & network scalability

Wireless Network Planning - Tools

- Vendors offer free proprietary design platforms to aid your WLAN planning
 - Unifi Design Center
 - TP-Link Omada Heat Map
 - Cambium Wi-Fi Designer
 - Netspot
 - Limited full feature access
 - Multivendor support

Choosing a wireless access point

- Cloud Management
 - O Unifi, TP-Link Omada, D-Link, Cambium, etc
- Wi-Fi Technology
 - O MIMO, MESH, PoE, Beam forming
- Antenna Gain
 - O The higher the better for long range coverage
- Antenna Type
 - O Directional Vs Omni directional antennas
- Speed
- Number of simultaneous connections supported

Wireless AP Placement

- Access point mounting and location are critical for effective Wi-Fi coverage
- Based on the antenna radiation pattern
- Indoor AP Ceiling mounting vs Wall Mounting

Knowledge | Community | Solutions

Channel Selection & Optimization

- A physical survey give insights on the available channels with in a specific deployment area.
- Fixed channel optimization Vs Dynamic controller channel optimization
- 2.4GHz band non overlapping channels 1, 6, 11, 14

Channel Selection & Optimization – Cont'd

• Three channel coverage design

Knowledge | Community | Solutions

Channel Selection & Optimization – Cont'd

- 5Ghz band has 25 non over lapping channels
 - \circ $\,$ U-NII-1: 5170-5250 has 4 of 20 MHz each
 - 36,40,44,48
 - U-NII-2A: 5250-5330 has 4 of 20 MHz each
 - **52, 56, 60, 64**
 - U-NII-2C: 5490-5730 has 12 of 20 MHz each
 - **1**00, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144
 - U-NII-3: 5735-5835 has 5 of 20 MHz each
 - **1**49, 153, 157, 161, 165

Wireless at Layer 3

- Wi-Fi Routers do many things
 - Routing, NAT, Firewall, DHCP
 - These are Layer 3 functions!
- Keep Layer 3 functions in the wired core
 - You cannot scale a network with Wi-Fi Routers
- An Access Point simply bridges networks
 - This is a layer 2 function: 802.3 <-> 802.11
 - Scalable networks use Access Points, not Wi-Fi Routers

Wireless Network Authentication

- Authentication can be implemented in many ways:
 - MAC Address Restrictions
 - Pre-Shared Key based Authentication
 - WPA-PSK insecure, not scalable
 - Captive Portal Authentication
 - Better than a pre-shared key, but not the ideal
 - \circ 802.1x/WPA2 Enterprise Authentication = Ideal!
 - Performed on centralized servers

Wireless Network Challenges

- Interference
- Signal coverage and Dead zones
- Bandwidth Congestion
- Device compatibility
- Security Risks

Interference

- Disruption or weakening of a wireless signal
- Caused by
 - Nearby Wi-Fi networks in the same channel
 - Non-Wi-Fi devices like Bluetooth, microwaves
 - Physical obstructions like walls and buildings.

Signal Coverage and Dead Zones

- The extent to which a device can receive and transmit wireless signals
- Places where the signal can't reach.
- Dead zones are caused by;
 - Obstacles
 - Distance from access points

Bandwidth Congestion

• The network has insufficient

capacity to handle the amount of

data passing through it

- This can be caused by;
 - Too many users connected to an Access Point
 - High bandwidth applications like video streaming, online gaming

I have few users on the network but my network is still slow?

What to Look out for??

- Coverage gaps (Dead zones)
 - Are you in range of the Wi-Fi signals
 - Are there obstructions like walls, trees

- Physical and Basic checks
 - Is the AP or router powered and functioning
 - Are the Ethernet cables securely connected

Wireless Network Troubleshooting

What to Look out for?

- Channel Interference
 - Overlapping channels
 - Channel Congestion

Wireless Network Troubleshooting

Troubleshooting tools?

- WiFi Network Analysers
 - Detect channel interference
- WiFi Monitoring Tools
 - Determine link speed, signal strength, and frequency

Knowledge | Community | Solutions

Common Fixes to Wireless network Problems

- Coverage gaps (Dead zones)
 - Wireless network survey (before and after network setup)
 - Add more APs
 - Strategic AP placement

- Channel interference
 - Use non-overlapping channels
- Device compatibility
 - Upgrade your device
- Security
 - Use secure authentication protocols (WPA2 Enterprise)

Enough of the talking, let's make our hands dirty SETTING UP A WIRELESS NETWORK

Practical session

Setting up a Unifi Controller for Unifi devices

- Form 6 groups
- Each group will have access to a VM
- Follow the documentation provided to install the controller
- Adopt the access points into the controller
- Setup a wireless network

Assignment

Setting up Omada controller for Tp-links

- Find out different ways Omada controller can be setup
- If possible install the controller and adopt the Tp-link wireless devices
- Compare the functionality between the Unifi Controller and Omada Controller

THE END

Thank you for your time

Knowledge | Community | Solutions