

ICT SKILLING FOR SCHOOLS

How Internet Works & Introduction to LANs

Clinton Tumutonda <u>ctumutonda@renu.ac.ug</u> Fahadi Muhumuza <u>fmuhumuza@renu.ac.ug</u>

Presentation

13th May 2025

Outline

- Introduction to Internet
- How the Internet works?
- OSI model & TCP/IP
- Local Area Network Overview

Introduction to Internet

What is Internet?

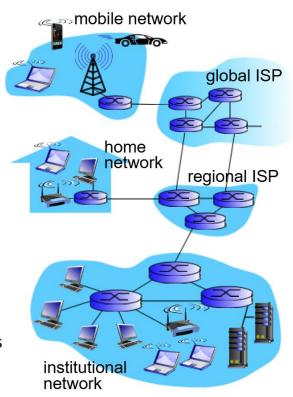
- A network of computers which links many different types of computers all the world.
- A network of networks worldwide.
- It is a very large wide area network (**WAN**) connecting computers and networks around the world.
- It makes it possible for millions of users to connect to one another via telephone lines, cable lines, satellites.
- Born in late 1960's Was created by the Advanced Research Project Agency(ARPA) of U.S Department of Defense for scientific and military communications

Introduction to Internet: "nuts and bolts" view

wireless links

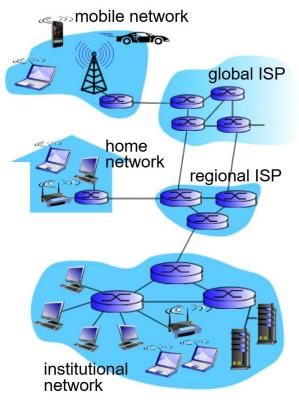
wired

links

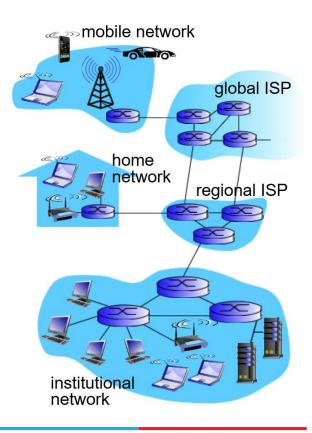

- millions of connected computing devices:
 - hosts = end systems
 - running network apps

communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth


- Packet switches: forward packets (chunks of data)
 - routers and switches

Introduction to Internet: "nuts and bolts" view


- Internet: "network of networks"
 - Interconnected ISPs
- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, 802.11
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

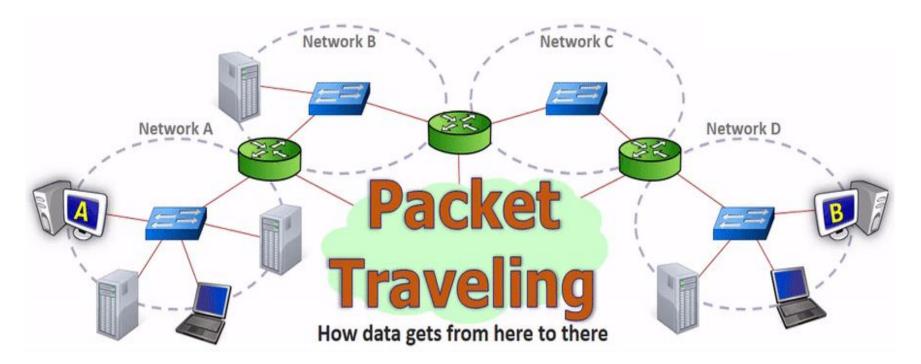
Introduction to Internet: a service view

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games, ecommerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

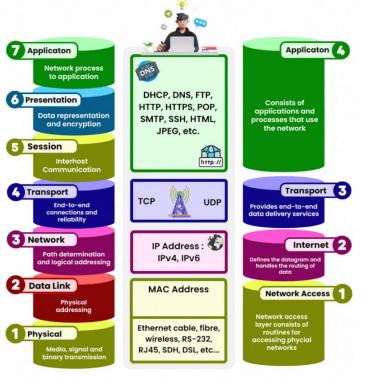
Introduction to Internet: Basic services

• WWW?

- World Wide Web
- It is a most popular method of accessing the internet
- Uses Hypertext Transfer Protocol (HTTP) to deliver web pages
- Web pages created by Hyper Text Markup Language (HTML)
- Electronic mail; e-mail
 - Enables sending and receiving of a mail(message)
 - Faster than paper mail
 - Images, audio, video can be sent along with text
- File transfer protocol (FTP)
 - Enables users to move a file from one computer to another computer
 - A file may contain; text, image, artwork, movie, sound, software, etc
- Telnet/SSH??



How the Internet Works



The OSI model & TCP/IP

OSI Model vs TCP/IP Model

The Internet's architecture;

- Primarily based on the TCP/IP model, not directly on the OSI model,
- We use the OSI model to conceptually understand network communication

Layers & Encapsulation;

- Each layer provides services to the layer above
- Each layer makes use of the layer below
- Data from one higher layers is encapsulated(wrapped) in headers of the layer below

How the Internet Works

• TCP/IP and OSI Model

- Universal protocols
- Allows all devices to communicate in the same language regardless of type

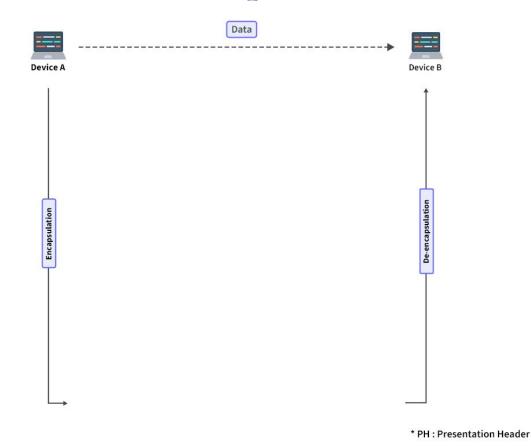
• Routers

- Guide data packets across different networks
- Choose the best available path to the destination

• Client-Server Model

- Client (e.g. your laptop) requests data
- Server (e.g. YouTube) sends the response

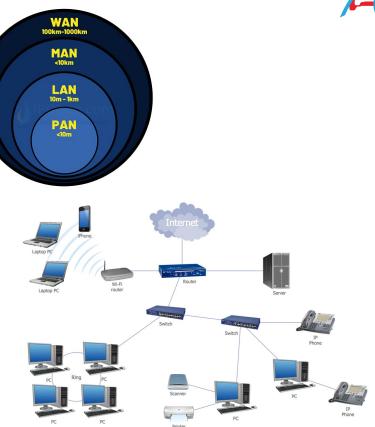
• Data Packets


- Information is broken into small chunks
- Packets travel separately and are reassembled at the destination

• Network Layers

- Layers handle different tasks (physical, addressing, transport, etc.)
- Work together to move data from sender to receiver
- Why Layers? Easy to understand and troubleshoot, Easy to program (change one layer without changing others)

The OSI Model: "Encapsulation in action"



Local Area Network

- A collection of devices connected together in one small physical location.
- Other networks–PAN,MAN,WAN
- Cable or Wireless connections.
- Cable Ethernet, Optical Fiber, Serial.
- Wireless (WLAN) WiFi, Microwave links.

Common Network Devices

RENU

1. Router

- A Layer 3 device that routes and forwards data between networks
- Uses IP addresses.
- Determines the best path for data to travel.
- Sometimes includes firewall, and DHCP functions
- Does NAT

Selecting Routers

Minimum features:

- Routing (layer 3 forwarding)
 - IPv4 and IPv6, static routes
- Powerful CPU, Large Memory
- Management: SSH, SNMP
- OSPF (v2 and v3) or IS-IS
- Traffic growths
- NAT (if using internal private IPv4 address space)
- Cost

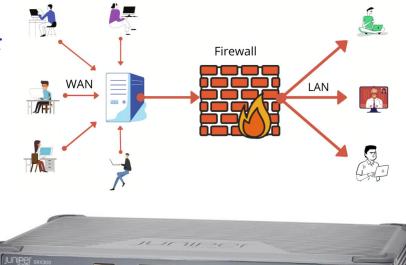
Common Network Devices

2. Switch

- Connects devices on a computer network.
- Can be managed or unmanaged
- Can be Layer 2 or Layer 3.
- Layer 2 uses MAC addresses.
- Layer 3 Has IP functionality such as basic routing.

Selecting Switches

Minimum features:


- Standards compliance– Encrypted management (SSH/HTTPS)
- VLAN trunking
- Spanning Tree (RSTP at least)
- SNMP
 - At least v2 (v3 has better security)
- Remote management and configuration backup
 - CLI preferred, also serial console desirable
- DHCP Snooping
 - Prevent end-users from running a rogue DHCP server
- Port density– Copper Vs Fiber ports
- Low Cost
 - D-Link DGS-1510 series, DGS-1210, MikroTik devices

Common Network Devices

3. Firewall

- A firewall acts as a security barrier between trusted internal and untrusted external networks.
- Controls traffic based on predefined rules to block unauthorized access and cyber threats

Common Network Devices

4. Access Points

- Creates a WLAN
- Allows Wi-Fi devices to connect to a LAN.
- Typically connected to LAN through ethernet.
- Outdoor or Indoor.
- Layer 2 device.

Transmission Media

- 1. Ethernet cable Copper cores.
 - Standardisations: CAT 6>CAT 5E>CAT 5
 - Connector RJ45 into ethernet port.
- 2. Optical fiber cable/ patch cord
 - Optical fiber core.
 - Connectors LC (Into SFP), SC, and FC
 - Types LC-LC, LC-SC, LC-FC
- 3. Console cable Access to devices

	Cable Type	Speed	Max Distance
	Category 5**	100Mbps	100m
	Category 5e	1,000Mbps	100m
_	Category 5e	2,500Mbps	100m
~	Category 6	5,000Mbps	100m
	Category 6	10,000Mbps	55m
	Category 6A	10,000Mbps	100m
	Category 8	40,000Mbps	30m

Network Terminologies 1. IP Addresses

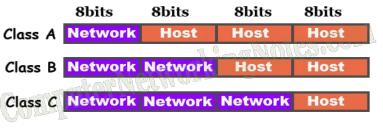
Dual stack

network

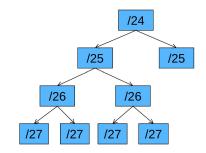
- A numerical layer 3 address that identifies a device and the network to which it is connected. eg.
- Prefix length– A range of IP addresses
- Internet connected networks use two types of IP Addressing
 - IPv4 "legacy" Internet protocol– 137.63.189.3/24.
 - Only 4,294,967,296 addresses- depleted
 - IPv6 new Internet protocol– 2c0f:f6d0:2b:13::/64.

IP Addresses cont....

- Private IPs Vs Public IPs
- NAT
 - Static NAT
 - Dynamic NAT
 - PAT (NAT Overload)
- Drawbacks of NAT
 - Performance issues
 - Troubleshooting Issues
 - Application Use


IPv4 Addresses

- 32-bit binary number
- Represented as four dotted decimal octet
- Two parts
 - Network/prefix portion & Host portion
- Netmask– alternative (old) way of writing the prefix length
 - A '1' for a prefix bit and '0' for a host bit
 - Hence N x 1's followed by (32-N) x 0's
- Classes Vs CIDR
 - Class A :1 to 127
 - Class B :128 to 191
 - Class C :192 to 223


Can you explain why 11111111 = 255 in decimal?

IPv4 Addresses cont...

RENU

- Special IP addresses ==
- Subnetting
 - Dividing a large network into
 - smaller ones(subnets)

	Range	Purpose
\$	10.0.0.0 - 10.255.255.255	Private networks (Class A)
	172.16.0.0 - 172.31.255.255	Private networks (Class B)
0	192.168.0.0 - 192.168.255.255	Private networks (Class C)
	127.0.0.0 - 127.255.255.255	Loopback (localhost)
	169.254.0.0 - 169.254.255.255	Link-local (automatic assignment)
	224.0.0.0 - 239.255.255.255	Multicast

Network Terminologies

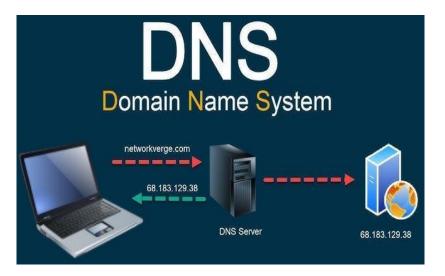
2. MAC Address - A unique layer 2 address that identifies devices network devices.

 Assigned to Network Interface Card (NIC) – Identifies device + Vendor eg. 28:b8:29:43:29:93.

Network Terminologies

3. DHCP

- A system that automatically assigns a unique IP address to each device on a network.
- A device may fail to get an IP (169.254.x.x/16) due to;
 - A weak Wi-Fi signal
 - Network cable problems
 - DHCP server malfunctioning
 - Static IP address configuration
 - No available IP addresses



Network Terminologies

4. DNS

- DNS translates domain names into IP addresses, allowing users to access websites without typing numeric addresses.
- Without DNS, users would need to remember complex numerical IP addresses for every website they visit.

Network Performance

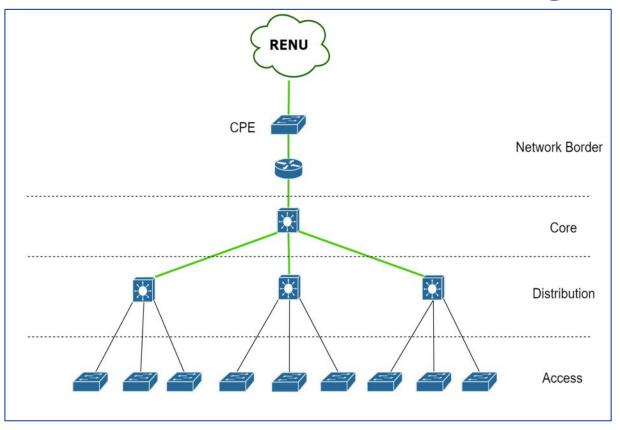
Bandwidth

- Network bandwidth defines how much data can possibly travel in a network in a period of time.
- Measured in Mbps.
- Analogy Bandwidth (Water pipe); Data (Water)
 - The bigger the pipe, the more water can flow through in a given amount of time.
- Latency Speed at which data travels across the network to its destination and back to the source.

Common Network Bottlenecks

- Slow and Unreliable Connectivity
 - Outdated routers, switches, and access points.

Inadequate Bandwidth


- As number of devices and high-bandwidth applications increases, the internet bandwidth needs to be upgraded proportionally.
- Unreliable Power
- DNS Issues
- Packet Loss
- Security Threats

How to spot Bottlenecks

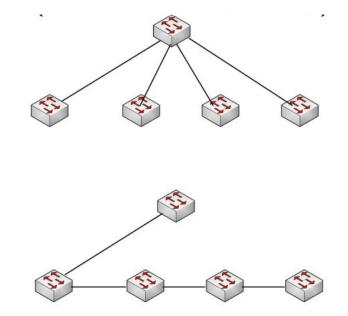
- Monitor Internet Speeds Regularly
- Track User Complaints
- Ping and Traceroute Tools
- Power Monitoring frequent outages or unstable power affecting network uptime.
- Test DNS Resolution Times

Recommended Network Design

Recommended Network Design Practices

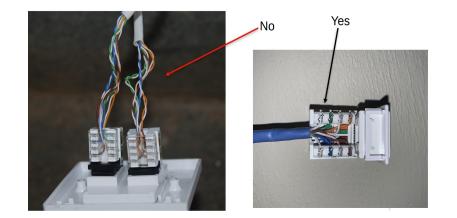
Hierarchical network design model

Using a hierarchical network design model that consists of three layers: core, distribution and access with separation of functions.


This model provides;

- Modularity
- Resilience
- Flexibility
- Scalability

Recommended Network Design Practices


- Minimize number of network devices in the path
- Build hub and spoke (sometimes called star) networks
- Not daisy chained (sometimes called cascaded) networks

Cabling Best Practices

- ✓ 90 Meters maximum installed cable distance– No copper cable
- ✓ No more than 1 cm unsheathed cable at terminations

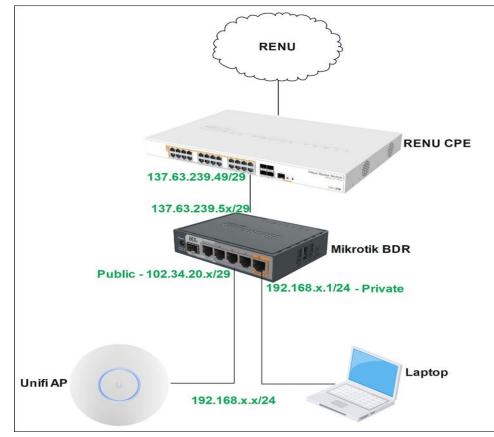
 Labeling is a key to reducing work later

✓ Use Conduits

Practical Session

Necessary Equipment

- A Mikrotik heX Router
- A Unifi U6 Access point
- Ethernet Cables
- A computer



Guidelines

- Form 6 groups
- Each group will have access to a Mikrotik router, Unifi AP, and some Ethernet cables
- Follow the documentation provided to complete the setup

Lab Topology

IP Requirements

- 1. P2P to CPE: 137.63.239.48/29
 - **Gateway:** 137.63.239.49
 - **BDR IP:** 137.63.239.5x/29
- 1. Private Subnet: 192.168.x.0/24
- 2. Public Subnet: 102.34.20.x/29

THANK YOU