
Knowledge | Community | Solutions

Schools Workshop
21st May, 2025

Samuel Wekobosya

swekobosya@renu.ac.ug

Knowledge | Community | Solutions

Operating System
Lab

Outline

● ssh

● User Management

● User Permissions &
Ownership

● Package Management

Knowledge | Community | Solutions

ssh
● SSH (Secure Shell) is a network protocol that provides secure remote login and

file transfer over a network.

$ ssh <username>@<server-ip>

Username: ubuntu

○ 137.63.148.93

○ 137.63.148.94

○ 137.63.148.95

○ 137.63.148.96

○ 137.63.148.97

○ 137.63.148.98

Knowledge | Community | Solutions

User Management - Users

● User management includes everything from creating a user to deleting a user.

● Command line tools used include

$ adduser

$ userdel

$ passwd

$ usermod

● The root user is the superuser and always has a user ID of 0.

Knowledge | Community | Solutions

User Management - User groups

● User groups in Linux are used in scenarios when you need to manage

permissions for a certain group of users.

● Every Linux user exists in at least one group.

● Command line tools include:

$ addgroup/groupadd

$ groupdel

$ usermod

Knowledge | Community | Solutions

User Management - Using sudo

● The sudo command allows you to run programs as another user (provided

you have that user’s password), by default the root user.

● To add a user to the sudo group, run:

$ usermod -aG sudo <username>

● To run a command as another user, run:

$ sudo -u <another_user> <command(s)>

Knowledge | Community | Solutions

User Management - Using sudo

● If you want to allow a specific user to run only certain programs as sudo,

instead of adding the user to the sudo group, add the users to the sudoers

file with the following command:

● For example, to allow the user <user> to run only the mkdir command as

sudo, type:

$ sudo visudo

<user> ALL=/bin/mkdir

Knowledge | Community | Solutions

User Permissions and File ownership

● Every file on your Linux system is assigned three kinds of owners, namely:

○ User: A user is the owner of the file. By default, the person who

created a file becomes its owner.

○ Group: A group can contain multiple users.

○ Other: Any other user who has access to a file. Practically, it means

everybody else.

Knowledge | Community | Solutions

User Permissions and File ownership

● Every file and directory in the Linux system has the following 3 permissions

defined for all the 3 file owners above:

○ read: This permission gives you the authority to open and read a file. Read

permission on a directory gives you the ability to list its content.

○ write: The write permission gives you the authority to modify the contents of a

file. The write permission on a directory gives you the authority to add, remove,

and rename files stored in the directory.

○ execute: In Unix/Linux, you cannot run a program unless the execute

permission is set.

Knowledge | Community | Solutions

Knowledge | Community | Solutions

File permissions: Numeric mode

Knowledge | Community | Solutions

Managing Permissions and File ownership

● This can be achieved using the “chmod” command, which stands for

change mode. With this command, we can set permissions (read, write,

execute) on a file/directory for the owner, group, or the others.

● The general syntax is shown below:

$ sudo chmod <permission> <directory/file>

● The permissions setting can be done in either symbolic or numeric/absolute

mode.

Knowledge | Community | Solutions

Managing file ownership and groups

● To change the ownership (user) of a file/directory, you can use the following

command:

$ sudo chown <user> <file/directory>

● Changing file ownership

$ sudo chown <user>:<group> <file/directory>

● To do the above for both the directory and all the files/subdirectories under it,

run:

$ sudo chown -R <user>:<group> <directory>

● Where R stands for Recursive

Knowledge | Community | Solutions

Package Management

Knowledge | Community | Solutions

Process Management

● Package management is a method of installing and maintaining (which

includes updating & removing) software on a Linux system.

● If a certain package requires a certain resource, such as a shared library or

another package, it is said to have a dependency.

Knowledge | Community | Solutions

Packaging Systems

● Software required for a Linux system can either be provided by the

distribution vendor through central repositories or be available in source code

that can be downloaded and installed manually.

● Because of the different distribution families, a package intended for one

distribution will not be compatible with another distribution, e.g., Debian uses

*.deb and CentOS uses *.rpm

Knowledge | Community | Solutions

Package Managers

● dpkg: It’s a low-level package manager for Debian-based systems. It can install, remove, provide

information about, and build *.deb packages, but it can’t automatically download and install their

corresponding dependencies.

● apt-get/apt: It is a high-level package manager for Debian and its derivatives and provides a

simple way to retrieve and install packages, including dependency resolution, from multiple

sources using the command line. yum is used instead of apt on Red Hat distros.

● snap: It’s a software deployment and package management system built by Canonical. snapd is

the service that runs on your machine and keeps track of your installed snaps, interacts with the

store, and provides the snap command for you to interact with it.

Knowledge | Community | Solutions

Software Installation
● Installation using dpkg: To install any “.deb” package, use the dpkg command with “-i” option

 $ dpkg -i <package.deb>

● Installation using apt-get: The ‘install‘ subcommand is followed by one or more packages you

wish to install or upgrade.

 $ apt-get install <package name>

e.g $ apt-get install apache2

● Removing installed packages (with dpkg)

 $ dpkg -r <package name>

● Updating and upgrading packages

$ apt-get update

$ apt-get upgrade

Knowledge | Community | Solutions

Removing Installed software

● The command is of the format apt-get <sub-command> <package name>

● The basic supported sub-commands include:

○ remove: To uninstall software packages without removing their configuration files. For

later re-use of the same configuration, use the ‘remove‘ sub-command.

○ purge: To remove software packages, including their configuration files, use the ‘purge‘

sub-command

○ autoremove: The ‘autoremove‘ sub-command is used to auto remove packages that were

certainly installed to satisfy dependencies for other packages, but they are now no longer

required.

Knowledge | Community | Solutions

THE END
Discussion

