

IP addressing

Patience Nagaba pnagaba@renu.ac.ug

Enabling Research & Education Collaboration

Outline

Outline

- Introduction
- IP Hierarchy
- Types of IP addresses
- NAT
- Subnetting
- IPv6 Addresses

Introduction

- IP address:
 - Internet protocol address
 - A unique identifier for host on a network, router *interface*
- Interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- *IP addresses are associated with each interface*

Who assigns IP addresses ?

REÑU

Enabling Research & Education Collaboration

Types of IP addresses

- Internet connected networks use two types of IP Addressing
 - IPv4 legacy Internet protocol
 - IPv6 new Internet protocol
- IPv4 addresses are 32 bits

= 2^32 =4,294,967,296 addresses

• IPv6 addresses are 128 bits

= 2^128 = 3.4e38 addresses

IPv4 address structure

- Conventionally represented as four dotted decimal octets
- If you turn on all bits this is:

1 st Octet		2 nd Octet		3 rd O	ctet	4 th Octet
255.	255		25	55		255

An IPv4 address has a network and host part

Public Vs Private addresses

- Private IP addresses are not routable on the internet.
- Can be used on your local area network

Explicitly defined in three classes as;

Class	Address Space	Address range
Class A	10.0.0.0 /8	10.0.0.0 to 10.255.255.255
Class B	172.16.0.0/12	172.16.31.0 to 172.31.255.255
Class C	192.168.0.0/24	192.168.0.0 to 192.168.255.255

What addresses do you use in your school ?

• Please share !

IP addresses cont'd

- Class A, Class B, Class C terminology and restrictions are now of historical interest only
 - Obsolete since 1994
 - Internet routing and address management today is classless

• CIDR = Classless Inter-Domain Routing

• Routing does not assume that former class A, B, C addresses imply prefix lengths of /8, /16, /24

• VLSM = Variable-Length Subnet Masks

• Routing does not assume that all subnets are the same size

Network Address Translation - NAT

- Local network uses just one public IP address as far as outside world is concerned:
 - Range of addresses not needed from ISP: just one IP address for all devices.
- Can change addresses of devices in local network without notifying outside world
- Can change ISP without changing addresses of devices in local network
- Devices inside a local network are not explicitly addressable, visible by outside world (a security plus)

Subnetting

- You might want to take one big network and create different smaller networks from it.
- To achieve this, you have to perform subnetting.
- Since each L2 network needs its own prefix, then if you route more than one network you need to divide your allocation
- Ensure each prefix has enough IPs for the number of hosts on that network

Subnetting cont'd

- Blocks of IP addresses vary in size (number of unique addresses)
- Each block of IP has a unique prefix and a unique subnet mask.
- Ensure each prefix has enough IPs for the number of hosts on that network

IPv6 Addresses - Introduction

- 128-bit binary number
- Conventionally represented in hexadecimal 8 words of 16 bits, separated by colons e.g.
 - 2607:8400:2880:0004:0000:0000:80DF:9D13
- Leading zeros can be dropped
- The right-most contiguous run of all-zero words can be replaced by

"::"

• 2607:8400:2880:4::80DF:9D13

Hexadecimal

8	1000	າດດ	ſ
0	1000	000	U
9	1001	001	0
Α	1010	010	С
В	1011	011	С
С	1100	100	С
D	1101	101	С
Ε	1110	110	С
F	1111	111	С

0000 = 000000000000000 FFFF = 1111111111111

Why IPv6?

- Larger address space
 - IPv6 addresses are 128 bits, compared to IPv4's 32 bits.
 - There are enough IPv6 addresses to allocate more than the entire IPv4 Internet
 - address space to everyone on the planet.
- Elimination of public-to-private NAT
 - End-to-end communication traceability is possible.
- Elimination of broadcast addresses
 - IPv6 now includes unicast, multicast, and anycast addresses.
- Support for mobility and security
 - Helps ensure compliance with mobile IP and IPsec standards.
- Simplified header for improved router efficiency

Is IPv4 obsolete?

- IPv4 is in no danger of disappearing overnight.
 - It will coexist with IPv6 and then gradually be replaced.
- IPv6 provides many transition options including:
 - Dual stack:
 - Both IPv4 and IPv6 are configured and run simultaneously on the interface.
 - IPv6-to-IPv4 (6to4) tunneling and IPv4-compatible tunneling.
 - NAT protocol translation (NAT-PT) between IPv6 and IPv4.
 - This is also know as translation

Questions ?

Enabling Research & Education Collaboration